日本东京工业大学生命理工学院近藤科江教授来访我校,访问期间将举办学术报告进行交流,欢迎相关师生参加。
近藤科江教授主要学术任职:日本肿瘤及低氧协会主席;日本分子成像协会主席;日本女性工程师和科学家联合会副主席;日本女性科学家协会主任;日本癌协会理事。
报告题目、报告时间
(1):Tumor hypoxia——8月9日 上午9:00
(2):In vivo optical imaging——8月9日 下午14:30
(3):Drug delivery system——8月10日 上午9:00
报告地点:科学园 2E栋 405室
主办单位:国际项目管理中心
承办单位:生命科学与技术学院
报告人简介:
近藤科江,女,本科毕业于歧阜药科大学,于1984年赴美国Albany Medical College of Union University留学获得硕士学位, 此后返回日本并于1989年博士毕业于大阪大学医学院。从1990年起,先后任职于大阪大学、冈山大学、京都大学;历任助教、副教授;并于2008起任职京都大学医学院教授。于2010年起任东京工业大学生命理工学院教授至今,是该学院当时唯一的女教授。
本课题组主要集中于肿瘤低氧研究。低氧环境是实体肿瘤所特有的共同特征,它影响对肿瘤的治疗反应并与肿瘤恶性演进相关。本课题组开发了低氧特异性的前体肿瘤药物,并使用分子生物学及蛋白质工程技术、荧光和近红外荧光染料成像技术开发了可用于肿瘤早期诊断的成像探针。目前研究主要集中于HIF-1因子(hypoxia-inducible factor 1),HIF-1作为低氧诱导的转录因子发挥作用,已经有超过100个HIF-1直接的靶基因被发现,其中有多个基因在肿瘤发生及恶性演进中起重要作用。
报告摘要:
1. Tumor hypoxia
Human solid tumors contain hypoxic regions that have a considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Furthermore, hypoxia induces transcription factor HIF-1, which in turn activates transcription of various genes involved in malignant phenotypes of tumors, such as sustained angiogenesis, apoptosis resistance, enhanced tumor growth, invasion and metastasis. In this lecture, I will introduce these characteristics of “Tumor hypoxia” in more detail and my research targeting HIF-1-active hypoxic tumor cells.
<References>
Kizaka-Kondoh S*, et al. The HIF-1 active microenvironment: an environmental target for cancer therapy. Advanced Drug Delivery Reviews, 61(7-8):623-632 (2009)
Kizaka-Kondoh S*, et al. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 94, 1021-1028 (2003).
2. In vivo optical imaging
In vivo optical imaging is a noninvasive technique that utilizes light to monitor molecular and biological processes. Because of fundamental optical properties such as reflection, absorption, and scattering, the light has low tissue penetration and resolution. Therefore, application of optical imaging has been limited to small animals in vivo imaging, endoscopic observation and intraoperative imaging. In this lecture, I introduce recent progress in optical imaging studies including us.
<References>
Kuchimaru T, et al. An easy and reliable model of bone metastasis by injecting cancer cells through caudal arteries. Nature Communications, in press.
Iwano S, et al. Single cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935-939 (2018).
Kuchimaru T, et al. A luciferin analog generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun, 7, 11856 (2016).
3. Drug delivery system
Drug delivery system is a technology that specifically and efficiently delivers a therapeutic and diagnostic agents to a disease site. This technology can reduce the dose or the number of administrations and therefore reduces side effects. In this lecture, I will talk about basic information about drug administration and biodistribution, and introduce protein transduction domain (known as PTD or cell penetration peptide, CPP) and nanoparticles as drug delivery systems.
<References>
Kadonosono T, et al. Cell penetrating peptides improve tumor delivery of cargos through Neuropilin-1-dependent extravasation. J. Control. Release, 201:14-21 (2015).