讲座报告:美国路易斯安娜州立大学鲍惠铭教授讲座通知

时间 2019年05月28日 09:30 - 11:00
地点 明德楼D603
网址

美国路易斯安娜州立大学鲍惠铭教授讲座通知

    受科学与工业技术研究院资助,应化工与化学学院邀请,美国路易斯安娜州立大学鲍惠铭教授近日来我校进行讲学活动,并进行学术讲座和交流,欢迎校内师生参加。

 

题目: 稳定同位素效应中的几个难题:地球化学寻求物理化学的帮助  

地点   明德楼D603      

时间 2019  05  28  09:30

 

主讲人简介

鲍惠铭1986年于北京大学地质系获学士学位,1989年于中科院南京地质古生物研究所获硕士学位,1998年于美国普林斯顿大学获地球化学博士学位,1998  2001年于美国加州大学圣地亚哥分校做博士后,从2001年起,在美国路易斯安娜州立大学历任助理教授、副教授、正教授和Charles L. Jones教授。2011年当选为美国AAAS会士(Fellow)。主要研究方向是高维度稳定同位素体系在地球化学、地球早期历史(尤其是生物圈、水圈、大气圈的相互作用),大气科学和环境科学中的应用。主要贡献有发展了氧-17高精度测量技术和方法,并发现了硫酸盐的巨大氧-17负异常,为晚元古代“雪球地球”理论提供了最具说服力的证据;首次合作发现了硫-33异常, 成为23亿年前大氧化事件的最直接的大气证据。根据高维度氧硫同位素数据重建了古代火山喷发或现代人类活动所产生的含硫气体的氧化途径。近年来,领导的团队奠定了利用稳定同位素非质量分馏信号研究重大地质事件、地球环境变化等科学问题的国际地位,并荣获美国环保总署2011年“年度科学技术成就奖”。在权威SCI期刊上发表论文50余篇,其中以第一作者发表Nature论文4篇、Science论文2篇,并在多个权威SCI杂志上发表特邀领域综述;论文的单篇SCI引用次数最高达1200多次。近几年受邀在耶鲁大学、普林斯顿大学,华盛顿卡内基研究院、中科院、哈佛大学等多地做特邀讲座,并多次在美国地球物理学会秋季大会、Goldschmidt大会作邀请报告和主题报告

 

Huiming Bao (鲍惠铭), Charles L. Jones Professor in Geology and Geophysics, Louisiana State University (LSU), U.S.A. He got his BSc degree in Geology from Peking University in 1986 and MSc in Geology and Paleontology from Chinese Academy of Sciences (CAS) in 1989. After four years on an assistant professor position in CAS, he moved to US in 1993 and got his PhD in Geosciences from Princeton University in 1998. And the subsequent 3-years’ postdoc experience in University of California San Diego (UCSD) prepared him for a faculty job at LSU in 2001. From shallow marine carbonate systems in CAS, to ancient soil records at Princeton, to atmospheric chemistry at UCSD, and to his current interest in extraterrestrial processes, Bao’s research interest evolved from under the water to above the water, into the sky, and out to the space. His most well-known contribution is the conceptual development, experimental technique development, and applications of triple oxygen isotope composition to geology, planetary, and environmental problems, including 1) the discovery of highly, non-mass-dependently depleted oxygen-17 signatures in sedimentary records, which provided the strongest evidence of an ultra-high CO2 concentration at the aftermath of a global glacial event at 630 million years ago, supporting the Neoproterozoic “snowball Earth” theory; and 2) theoretical and application exploration of high-dimensional (e.g. triple, clumped, position-specific, and tangled) stable isotope relationships.

 

                                                

点击微信扫一扫